SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size

نویسندگان

  • Forrest N. Iandola
  • Matthew W. Moskewicz
  • Khalid Ashraf
  • Song Han
  • William J. Dally
  • Kurt Keutzer
چکیده

Recent research on deep convolutional neural networks (CNNs) has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple CNN architectures that achieve that accuracy level. With equivalent accuracy, smaller CNN architectures offer at least three advantages: (1) Smaller CNNs require less communication across servers during distributed training. (2) Smaller CNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller CNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small CNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques, we are able to compress SqueezeNet to less than 0.5MB (510× smaller than AlexNet). The SqueezeNet architecture is available for download here: https://github.com/DeepScale/SqueezeNet

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size

Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs...

متن کامل

SqueezeNext: Hardware-Aware Neural Network Design

One of the main barriers for deploying neural networks on embedded systems has been large memory and power consumption of existing neural networks. In this work, we introduce SqueezeNext, a new family of neural network architectures whose design was guided by considering previous architectures such as SqueezeNet, as well as by simulation results on a neural network accelerator. This new network...

متن کامل

FastNet

Inception [13] [14] [15] and the Resnet family of Convolutional Neural Network architectures [1] [2] [3] [5] have broken records in the past few years, but recent state of the art models have also incurred very high computational cost in terms of training, inference and model size. Making the deployment of these models on Edge devices, impractical. In light of this, we present a new novel archi...

متن کامل

SquishedNets: Squishing SqueezeNet further for edge device scenarios via deep evolutionary synthesis

While deep neural networks have been shown in recent years to outperform other machine learning methods in a wide range of applications, one of the biggest challenges with enabling deep neural networks for widespread deployment on edge devices such as mobile and other consumer devices is high computational and memory requirements. Recently, there has been greater exploration into small deep neu...

متن کامل

Deep Collaborative Learning for Visual Recognition

Deep neural networks are playing an important role in state-of-the-art visual recognition. To represent high-level visual concepts, modern networks are equipped with large convolutional layers, which use a large number of filters and contribute significantly to model complexity. For example, more than half of the weights of AlexNet are stored in the first fully-connected layer (4,096 filters). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.07360  شماره 

صفحات  -

تاریخ انتشار 2016